
Chapter 11

Shafting and Associated Parts

A selection of overhead valve camshafts for automotive engines. Source:

Courtesy of AVL Schrick.

When a man has a vision, he cannot get the power from the vision until
he has performed it on the Earth for the people to see.

Black Elk, Oglala Sioux visionary

This chapter focuses on shafts and related machine elements. Shafts are an essential component of most machines, and
are mainly used for power transmission. Shafts are designed to transmit torque and support bending moments and
axial loads; they also must be designed so that they do not deflect excessively. This includes dynamic instability as
well as static and fatigue loadings. Shafts utilize a number of machine elements to provide functionality. For example,
when a torque needs to be transmitted between a shaft and a machine element, that element can be mounted onto
the shaft with a key or spline. If a machine element needs to be located at a certain location on a shaft axis, such as
against a shoulder, then a retaining ring, set screw, or pin is often used. This chapter also discusses flywheels, which are
used to store energy and provide smooth, jerk-free motion. Finally, a wide assortment of coupling types are described.
Couplings are used to connect two shafts, and different coupling designs are able to accommodate misalignment and
damping of vibration.

Machine elements described in this chapter: Shafts, keys, splines, set screws, retaining rings, flywheels, couplings.
Typical applications: Shafts: widespread use to transmit power to a point of operation, automotive crankshafts, cam
shafts. Keys, splines, and set screws: used to transmit torque to another machine element’s hub, such as for gears, pulleys,
wire rope drums, mixer agitators, and flywheels. Retaining rings: used to fix the axial location of a component, such
as rolling element bearing races, pulleys, wheels, bearing sleeves, and gears. Flywheels: automotive engines, crushing
machinery, milling machinery, and machine tools. Couplings: used to connect two shafts, most commonly between the
power source or motor shaft and the drive shaft.
Competing machine elements: Shafts: gear drives (Chapters 14 and 15), belt and wire rope drives (Chapter 19). Keys,
splines, set screws, retaining rings: weldments, threaded retainers and adhesive joints (Chapter 16), press and shrink fits
(Chapter 10). Flywheels: fluid couplings, large gears. Couplings: clutches (Chapter 18) and gear drives (Chapters 14 and
15).
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Symbols
A area, m2

Ã constant defined in Eq. (11.26)
B̃ constant defined in Eq. (11.27)
C1 integration constant
Cf coefficient of fluctuation, Eq. (11.80)
Ct ring correction factor
c distance from neutral axis to outer fiber, m
d diameter, m
dm mean spline diameter, m
ds set screw diameter, m
E modulus of elasticity, Pa
g gravitational acceleration, 9.807 m/s2

h height, m
I area moment of inertia, m4

Im mass moment of inertia, kg-m2

J polar area moment of inertia, m4

Kc stress concentration factor
Ke kinetic energy, N-m
Kf fatigue stress concentration factor
k spring rate, N/m
kf surface finish factor
kr reliability factor
ks size factor
l length, m
ls spline length, m
M moment, N-m
Mf performance index, J/kg
ma mass, kg
n number of teeth
ns safety factor
P normal force, N
Pt retaining force, N
p pressure, Pa
pf interference pressure, Pa
qn notch sensitivity factor
r radius, m
Se modified endurance limit, Pa
S′e endurance limit, Pa
Sse shear modified endurance limit, Pa
Ssy shear yield strength, Pa
Su ultimate strength, Pa
Sut ultimate tensile strength, Pa
Sy yield strength, Pa
T torque, N-m
Tl load torque, N-m
Tm mean torque, N-m
t time, s
th thickness, m
U potential energy, N-m
u velocity, m/s
W load, N
w width, m
x, y, z Cartesian coordinates, m
δ deflection, m
θ cylindrical polar coordinate, deg
θωmax

location within a cycle where speed is
maximum, deg

θωmin
location within a cycle where speed is
minimum, deg

ν Poisson’s ratio
ρ density, kg/m3

σ normal stress, Pa
σe critical stress using distortion-energy

theory, Pa
σφ normal stress acting on oblique plane, Pa
τ shear stress, Pa

τφ shear stress acting on oblique plane, Pa
φ oblique angle, deg
ω angular speed, rad/s
ωφ fluctuation speed, rad/s

Subscripts
a alternating
c compression
i inner
m mean
o outer
r radial
s shear
θ circumferential
ω speed
1,2,3 principal axes

11.1 Introduction

This chapter begins by discussing the design of shafts, mak-
ing extensive use of the material from Sections 2.8 through
2.12 and Ch. 4 to develop stresses. The failure theories pre-
sented in Section 6.7 are used for static failure prediction in
Section 11.2; the material in Ch. 7 is used to develop de-
sign rules for fatigue of shafts in Section 11.3. Here, com-
binations of loading are presented, whereas previously each
type of loading was considered independently. It is impor-
tant that this material be understood before proceeding with
this chapter. The critical speed of rotating shafts is discussed
in Section 11.5. The dynamics and the first critical speed are
important, since the rotating shaft becomes dynamically un-
stable and large vibrations are likely to develop.

Keys, pins, and splines are used to attach devices to a
shaft, and are discussed in Section 11.6. These devices use
friction or mechanical interference to transmit a torque. Axial
position of parts on a shaft can be done with retaining rings,
cotter pins, or a number of similar devices. The design of
flywheels and couplings are considered in Sections 11.8 and
11.9. Flywheels are valuable energy storage devices that also
provide smooth operation. Couplings are used when two
shafts need to be connected and are available in a wide va-
riety of forms, the most common of which are presented.

11.2 Design of Shafts for Static

Loading

A shaft is a rotating or stationary member usually having
a circular cross-section much smaller in diameter than in
length, and used for power transmission. Machine elements
such as gears, pulleys, cams, flywheels, cranks, sprockets,
and rolling-element bearings are mounted on shafts, and as
such require a well-designed shaft as a prerequisite to their
proper function. The loading on the shaft can include combi-
nations of bending (almost always fluctuating); torsion (may
or may not be fluctuating); shock; or axial, normal, or trans-
verse forces. All of these types of loading were considered
in Chapter 4. Some of the main considerations in designing
a shaft are strength, using yield or fatigue (or both) as a cri-
terion; deflection; or the dynamics established by the critical
speeds. In general, the shaft diameter will be the variable
used to satisfy the design, although in many practical appli-
cations the shaft may not have a constant diameter.
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Shaft design must consider both static and fatigue fail-
ure possibilities. While at first it may appear that considering
fatigue only would result in conservative designs, this is not
always the case. For example, it is common that a rotating
shaft sees predominantly uniform stresses, but on rare occa-
sions encounters a much more significant stress cycle. Cumu-
lative damage as discussed in Section 7.9 can be considered,
with Miner’s rule as stated in Eq. (7.24) applied to design the
shaft. However, the high loading may be a rare event, such
as is caused by a machine malfunction or improper operation.
Thus, it may occur only extremely rarely, if at all, so that its
contribution to fatigue crack growth may be minor.

Even with an overload or malfunction, there is usually
some limit to the stresses that are applied to the shaft. For
example, the loads can be controlled by using keys or pins
(Section 11.6) or slip clutches (Section 18.10). In such circum-
stances, it is important to make sure that the shaft does not
fail statically, especially since the shaft is usually the most
difficult component to service or replace. Not surprisingly,
shafts are often designed with very large safety factors.

A number of different loading conditions are considered
here. Typically, the designer must establish either the mini-
mum shaft diameter to successfully support applied loads or
the safety factor for a specific design. This can be done us-
ing the approaches in Chapters 2 and 4, but the problem is so
common that simplified solutions for each case are presented
below.

11.2.1 Bending Moment and Torsion

Bending moments exerted on a shaft produce a maximum
stress, from Eq. (4.45), of

σx =
Mc

I
. (11.1)

Similarly, the shear stress due to an applied torque is, from
Eq. (4.33),

τxy =
Tc

J
, (11.2)

where, for a circular cross section,

c =
d

2
I =

πd4

64
and J =

πd4

32
. (11.3)

Substituting Eq. (11.3) into Eqs. (11.1) and (11.2) gives

σx =
64Md

2πd4
=

32M

πd3
, (11.4)

τxy =
Td/2

πd4/32
=

16T

πd3
. (11.5)

Note that since σy = 0, these stresses result in a plane stress
loading. Therefore, from Eq. (2.16),

σ1, σ2 =
σx

2
±

√

(σx

2

)2

+ τ2
xy. (11.6)

Substituting Eqs. (11.4) and (11.5) into Eq. (11.6) gives

σ1, σ2 =
16M

πd3
±

√

(

16M

πd3

)2

+

(

16T

πd3

)2

=
16

πd3

[

M ±
√

M2 + T 2

]

. (11.7)

From Eq. (2.19), the principal shear stresses are

τ1, τ2 = ±
√

τ2
xy +

(σx

2

)2

. (11.8)

Substituting Eqs. (11.4) and (11.5) into Eq. (11.8) gives

τ1, τ2 = ± 16

πd3

√

M2 + T 2. (11.9)

Distortion-Energy Theory

As shown in Section 6.7.1 and by Eqs. (6.11) and (6.12), the
Distortion-Energy Theory (DET) predicts failure if the von
Mises stress satisfies the following condition:

σe =
(

σ2

1 + σ2

2 − σ1σ2

)1/2
=

Sy

ns
, (11.10)

where Sy is the yield strength of shaft material and ns is the
safety factor. Substituting Eq. (11.7) into Eq. (11.10), the DET
predicts failure if

16

πd3
(

4M2 + 3T 2
)1/2

=
Sy

ns
. (11.11)

Thus, the DET predicts the smallest diameter where failure
will occur as

d =

(

32ns

πSy

√

M2 +
3

4
T 2

)1/3

. (11.12)

If the shaft diameter is known and the safety factor is desired,
Eq. (11.12) becomes

ns =
πd3Sy

32

√

M2 +
3

4
T 2

. (11.13)

Maximum-Shear-Stress Theory

As shown in Section 6.7.1 and by Eq. (6.8), the Maximum-
Shear-Stress Theory (MSST) predicts failure for a plane or bi-
axial stress state (σ3 = 0) if

|σ1 − σ2| =
Sy

ns
. (11.14)

Equation (11.7) gives

32
√
M2 + T 2

πd3
=

Sy

ns
. (11.15)

Thus, the MSST predicts the smallest diameter where failure
will occur as

d =

(

32ns

πSy

√

M2 + T 2

)1/3

. (11.16)

If the shaft diameter is known and the safety factor is an de-
sired, Eq. (11.16) becomes

ns =
πd3Sy

32
√
M2 + T 2

. (11.17)
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Figure 11.1: Figures used for Example 11.1. (a) Assembly drawing; (b) free-body diagram; (c) moment diagram in x-z plane; (d)
moment diagram in x-y plane; (e) torque diagram.

Example 11.1: Static Design of a
Shaft

Given: A shaft with mounted belt drives has tensile forces
applied as shown in Fig. 11.1a and frictionless journal bear-
ings at locations A and B. The yield strength of the shaft ma-
terial is 500 MPa.

Find: Determine the smallest safe shaft diameter by using
both the DET and the MSST for a safety factor of 2.0. Also,
provide a free-body diagram as well as moment and torque
diagrams.

Solution: A free-body diagram is shown in Fig. 11.1b; a mo-
ment diagram in the x-y plane, in Fig. 11.1c; and a moment
diagram in the x-z plane in Fig. 11.1d. These have been con-
structed using the approach described in Section 2.8. From
the moment diagrams, the maximum moment is

Mmax =
√

(118.75)2 + (37.5)2 = 124.5 N-m.

Figure 11.1e gives the torque diagram. Using the DET, the
smallest safe diameter is given by Eq. (11.12) as

d =

(

32ns

πSy

√

M2 +
3

4
T 2

)1/3

=

{

32(2)

π(500× 106)

[

124.52 +
3

4
(7.5)2

]1/2
}1/3

= 17.2 mm.

Using the MSST as given in Eq. (11.16) gives

d =

(

32ns

πSy

√

M2 + T 2

)1/3

=

{

32(2)

π(500× 106)

[

124.52 + 7.52
]1/2

}1/3

= 17.2 mm.

Since the torque is small relative to the moment, little differ-
ence exists between the DET and MSST predictions. This is
not normally the case, although the results are usually close.
Note that it is good design practice to specify a diameter that
is rounded up to a convenient integer dimension. In this
case, a diameter of 20 mm would be a good option.

11.2.2 Bending, Torsion, and Axial Loading

If, in addition to bending and torsion, an axial load is present,
the normal stress is similar to Eq. (11.4) and is given by:

σx =
32M

πd3
+

4P

πd2
. (11.18)

The shear stress is still expressed by Eq. (11.5); and the prin-
cipal normal stresses, by Eq. (11.6). Substituting Eqs. (11.18)
and (11.5) into Eq. (11.6) gives

σ1, σ2 =
16M

πd3
+

2P

πd2
±

√

(

16M

πd3
+

2P

πd2

)2

+

(

16T

πd3

)2

=
2

πd3

[

8M + Pd±
√

(8M + Pd)2 + (8T )2
]

.

(11.19)
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Substituting Eqs. (11.18) and (11.5) into Eq. (11.8) gives the
principal shear stresses as

τ1, τ2 = ± 2

πd3

√

(8M + Pd)2 + (8T )2. (11.20)

Distortion-Energy Theory

Substituting Eq. (11.19) into Eq. (11.10) shows that the DET
predicts failure if

4

πd3

√

(8M + Pd)2 + 48T 2 =
Sy

ns
. (11.21)

This equation is more complicated than Eq. (11.16), and an
explicit expression for the diameter cannot be obtained. Nu-
merical solutions of Eq. (11.21) are relatively easy to obtain,
however.

Maximum-Shear-Stress Theory

Substituting Eq. (11.19) into Eq. (11.14) shows that the MSST
predicts failure if

4

πd3

√

(8M + Pd)2 + 64T 2 =
Sy

ns
. (11.22)

Again, when an axial loading is included, an explicit expres-
sion for the diameter cannot be obtained.

11.3 Fatigue Design of Shafts

In cyclic loading, the stresses vary throughout a cycle and do
not remain constant as in static loading. In this section, a gen-
eral analysis is presented for the fluctuating normal and shear
stresses for ductile materials, and appropriate equations are
then given for brittle materials. Significant effort is expended
in deriving the ultimate expressions for diameter and safety
factor, as this makes simplifying assumptions readily appar-
ent. However, the casual reader may wish to proceed to the
end of this section where useful design expressions are sum-
marized.

11.3.1 Ductile Materials

Figure 11.2 shows the normal and shear stresses acting on
a shaft. In Fig. 11.2a, the stresses act on a rectangular ele-
ment, and in Fig. 11.2b, they act on an oblique plane at an
angle φ. The normal stresses are denoted by σ and the shear
stresses by τ . Subscript a designates alternating and sub-
script m designates mean or steady stress. Also, Kf des-
ignates the fatigue stress concentration factor due to nor-
mal loading, and Kfs designates the fatigue concentration
factor due to shear loading. On the rectangular element in
Fig. 11.2a, the normal stress is σ = σm ±Kfσa and the shear
stress is τ = τm±Kfsτa. This uses the approach presented in
Section 7.7 that applies the stress concentration factor to the
alternating stress and not the mean stress. This approxima-
tion has certain implications that will be discussed below.

The largest stress occurs when σa and τa are in phase,
or when the frequency of one is an integer multiple of the
frequency of the other. Summing the forces tangent to the
diagonal gives

0 = −τφA+ (τm +Kfsτa)A cosφ cosφ

−(τm +Kfsτa)A sinφ sinφ

+(σm +Kfσa)A cosφ sinφ.

σm ± Kf σa

σm ± Kf σa

τm ± Kfsτa

τm ± Kfsτa

(a)

(b)

τm + Kfsτa

τm + Kfsτa

σm + Kf σaτφ

σφ

φ

y

x

A
A sin φ

A cos φ

Figure 11.2: Fluctuating normal and shear stresses acting on
shaft. (a) Stresses acting on rectangular element; (b) stresses
acting on oblique plane at angle φ.
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Making use of double angle relations simplifies this expres-
sion to

τφ = (τm +Kfsτa) cos 2φ+
1

2
(σm +Kfσa) sin 2φ.

Separating the mean and alternating components of stress
gives the stress acting on the oblique plane as

τφ = τφm + τφa

=
(σm

2
sin 2φ+ τm cos 2φ

)

+

(

Kfσa

2
sin 2φ+Kfsτa cos 2φ

)

. (11.23)

Recall the Soderberg line in Fig. 7.16 for tensile loading.
For shear loading, the end points of the Soderberg line are
Sse = Se/2ns and Ssy = Sy/2ns. Figure 11.3 shows the
Soderberg line for shear stress. From the proportional trian-
gles GHF and D0F of Fig. 11.3,
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Figure 11.4: Illustration of relationship given in Eq. (11.28).

HF

0F
=

HG

0D
, or

Sy/2ns − τφm
Sy/2ns

=
τφa

Se/2ns
,

so that
1

ns
=

τφa
Se/2

+
τφm
Sy/2

. (11.24)

Substituting the expressions for τφa and τφm into Eq. (11.24)
gives

1

ns
=

Kfσa

2
sin 2φ+Kfsτa cos 2φ

Se/2

+

(σm

2
sin 2φ+ τm cos 2φ

)

Sy/2

= Ã sin 2φ+ 2B̃ cos 2φ, (11.25)

where

Ã =
σm

Sy
+

Kfσa

Se
, (11.26)

B̃ =
τm
Sy

+
Kfsτa
Se

. (11.27)

The stress combination that produces the smallest safety fac-
tor is desired, since this corresponds to a maximum-stress sit-
uation. The minimum value of ns corresponds to a maximum
value of 1/ns. Differentiating 1/ns in Eq. (11.25) and equat-
ing the result to zero gives

d

dφ

(

1

ns

)

= 2Ã cos 2φ− 4B̃ sin 2φ = 0.

Therefore,

sin 2φ

cos 2φ
= tan 2φ =

Ã

2B̃
. (11.28)

This relationship is illustrated in Fig. 11.4, which shows that

sin 2φ =
Ã

√

(

Ã
)2

+ 4
(

B̃
)2

and

cos 2φ =
2B̃

√

(

Ã
)2

+ 4
(

B̃
)2

. (11.29)

Substituting these into Eq. (11.25) gives

1

ns
=

(

Ã
)2

√

(

Ã
)2

+ 4
(

B̃
)2

+
4
(

B̃
)2

√

(

Ã
)2

+ 4
(

B̃
)2

=

√

(

Ã
)2

+ 4
(

B̃
)2

.

Substituting Eqs. (11.26) and (11.27) gives

1

ns
=

√

(

σm

Sy
+

Kfσa

Se

)2

+ 4

(

τm
Sy

+
Kfsτa
Se

)2

,

Sy

ns
=

√

(

σm +
Sy

Se
Kfσa

)2

+ 4

(

τm +
Sy

Se
Kfsτa

)2

.

(11.30)
Setting σy = 0, σx = σ, and τxy = τ in Eq. (2.19) for biaxial
stresses, the maximum shear stress is

τmax =

√

(σ

2

)2

+ τ2, (11.31)

and the safety factor is

ns =
Sy/2

τmax

=
Sy/2

√

(σ/2)2 + τ2
=

Sy√
σ2 + 4τ2

,

Sy

ns
=

√

σ2 + 4τ2. (11.32)

Equations (11.32) and (11.30) have the same form, and

σ = σm +
Sy

Se
Kfσa and τ = τm +

Sy

Se
Kfsτa.

Note that the normal and shear stresses each contain a steady
and an alternating component, the latter weighted for the ef-
fect of fatigue and stress concentration.

By making use of Eqs. (11.4) and (11.5), Eq. (11.30) be-
comes

ns =
πd3Sy

32

√

(

Mm +
Sy

Se
KfMa

)2

+

(

Tm +
Sy

Se
KfsTa

)2

.

(11.33)
If the smallest safe diameter for a specified safety factor is
desired, Eq. (11.33) can be rewritten as

d =





32ns

πSy

√

(

Mm +
Sy

Se
KfMa

)2

+

(

Tm +
Sy

Se
KfsTa

)2





1/3

(11.34)
Equations (11.33) and (11.34) represent the general form

of a shaft design equation using the Soderberg line and MSST.
Note in Eq. (11.34) that Sy , Sy/Se, Kf , and Kfs depend on the
shaft diameter d. Thus, a numerical or iterative approach is
needed to solve for the required diameter.

Peterson [1974] modified Eq. (11.30) by changing the co-
efficient of the shear stress term from 4 to 3, such that the DET
is satisfied and gives

Sy

ns
=

√

(

σm +
Sy

Se
Kfσa

)2

+ 3

(

τm +
Sy

Se
Kfsτa

)2

.

(11.35)
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By making use of Eqs. (11.4) and (11.5), Eq. (11.35) becomes

ns =
πd3Sy

32

√

(

Mm +
Sy

Se
KfMa

)2

+
3

4

(

Tm +
Sy

Se
KfsTa

)2

.

(11.36)
The smallest safe diameter corresponding to a specific safety
factor can then be expressed as

d3 =
32ns

πSy

√

(

Mm +
Sy

Se
KfMa

)2

+
3

4

(

Tm +
Sy

Se
KfsTa

)2

(11.37)
The distinction between Eqs. (11.33) and (11.34) and
Eqs. (11.36) and (11.37) needs to be recognized. Equations
(11.33) and (11.34) assume that the MSST is valid; Eqs. (11.36)
and (11.37) assume that the DET is valid. All four equations
are general equations applicable to ductile materials.

Example 11.2: Fatigue Design of a
Shaft
Given: When a rear-wheel-drive car accelerates around a
bend at high speeds, the drive shafts are subjected to both
bending and torsion. The acceleration torque, T , is reason-
ably constant at 400 N-m while the bending moment is vary-
ing due to cornering and is expressed in newton-meters as

M = 250 + 800 sinωt.

Thus, the mean and alternating moments are Mm = 250 N-m
and Ma = 800 N-m. Assume there is no notch that can pro-
duce a stress concentration. The reliability must be 99% and
the safety factor is 4.5. The shaft is forged from high-carbon
steel, so that it has equivalent mechanical properties as AISI
1080 steel that has been quenched and tempered at 800◦C.

Find: The shaft diameter using the MSST.

Solution: From Eq. (7.7) and Table A.2 the bending en-
durance limit for AISI 1080 steel is

S′e = 0.5Su = 0.5 (615) = 307.5 MPa.

From Fig. 7.11, the surface finish factor for an as-forged sur-
face at Sut = 615 MPa is kf = 0.42. To evaluate the size
factor, the shaft diameter needs to be chosen, and this value
can be modified later if necessary. From Eq. (7.20), and as-
suming d = 30 mm,

ks = 1.248d−0.112 = 1.248(30)−0.112 = 0.853.

From Table 7.4, for 99% probability of survival, the reliability
factor is 0.82. Substituting this value into Eq. (7.18) gives the
endurance limit as

Se = kfkskrS
′

e = (0.42)(0.853)(0.82)
(

307.5× 106
)

,

or Se = 90.19 MPa. Substituting into Eq. (11.34) with Ta = 0
gives

d3 =







32ns

πSy

√

(

Mm +
Sy

Se
KfMa

)2

+ T 2
m







1/3

=
32(4.5)

π (380× 106)

×

√

(

250 +
(380× 106)

(90.19× 106)
(1)(800)

)2

+ (400)2.

which is solved as d = 0.0760 m = 76.0 mm.
Note that this value is very different from the assumed shaft
diameter of 30 mm, so at least one more iteration is required.
Use the value of 76.0 mm as the new assumed value for di-
ameter. From Eq. (7.20),

ks = 1.248d−0.112 = 1.248(76.0)−0.112 = 0.768.

Therefore,

Se = (0.42)(0.768)(0.82)(307.5× 106) = 81.33 MPa.

From Eq. (11.34),

d3 =
32(4.5)

π(380× 106)

×

√

[

250 +
(380× 106)

(81.33× 106)
(1)(800)

]2

+ (400)2,

or d = 0.0785 m. Note that the size factor was calculated
based on a diameter of 76.0 mm, and the updated solution is
78.5 mm. Since these are very close, no further iterations are
deemed necessary. A diameter of 78.5 mm is an awkward
design specification; a reasonable dimension to specify for
the shaft would be 80 mm or even larger, depending on such
factors as stock availability and cost.

Example 11.3: Fatigue Design of a
Shaft Under Combined Loading
Given: The shaft made of AISI 1080 high-carbon steel
(quenched and tempered at 800◦C) shown in Fig. 11.5 is sub-
jected to completely reversed bending and steady torsion. A
standard needle bearing (see Fig. 13.1c) is to be placed on di-
ameter d2 and this surface will therefore be ground to form
a good seat for the bearing. The remainder of the shaft will
be machined. The groove between the sections ensures that
the large diameter section is not damaged by the grinding
operation, and is called a grinding relief.

Assume that standard needle bearing bore sizes are in 5-
mm increments in the range 15 to 50 mm. Design the shaft
so that the relative sizes are approximately (within 1 mm)
d2 = 0.75d3 and d1 = 0.65d3. At this location, the loading
involves completely reversed bending of 70 N-m, and steady
torsion of 45 N-m. Design the shaft for infinite life.

Find: Determine the diameter d2 that results in a safety factor
of at least 5.0.

d3 d2

d1

Semicircular groove

Ground surface

Figure 11.5: Section of shaft in Example 11.3.
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Solution: The stress concentration factor can be obtained
from the geometry using the ratios given. Not that some
variation will occur due to rounding of the dimensions,
but this has only a minor effect on the stress concentration.
Therefore,

d2
d1

=
0.75d3
0.65d3

= 1.154.

Since the grinding relief groove is semicircular,

r

d
=

(d2 − d1)/2

d1
=

1

2

(

d2
d1
− 1

)

= 0.0769.

Therefore, from Fig. 6.6b, Kc = 2.05. From Table A2 for this
steel, Su = 615 MPa and Sy = 380 MPa. From Eq. (7.7) for
bending,

S′e = 0.5Su = 307 MPa.

For the shaft, one surface is ground, but the remainder is ma-
chined. An inspection of Fig. 11.5 suggests that the ground
surface has no stress concentrations and has a larger diam-
eter than the region of grinding relief. Therefore, failure is
most likely at the relief, and a surface finish correction factor
will be calculated based on a machined surface. Therefore,
from Eq. (7.19),

kf = eSf
u = (4.51)(615)−0.265 = 0.822.

No yield criterion has been specified, so the MSST will be
used. The problem states that the diameter d2 will be a seat
for a bearing, and such bearings are available in 5-mm incre-
ments. Therefore, d2 will be arbitrarily assigned a value of 20
mm, and the safety factor will be calculated and compared to
the required value using Eq. (11.33). If the safety factor is not
sufficient, then d2 will be increased until a sufficiently high
safety factor results. An alternative approach is to derive an
expression for diameter based on Eq. (11.34), and then obtain
a numerical solution using a mathematics software package.
Either approach is valid and will produce the same results.

If d2 is 20 mm, then d3 is d2/0.75 = 26.67 mm, which is
rounded up to d3 = 27 mm. Similarly, d1 = 0.65d3 = 17.55
mm, so that d1 will be assigned a value of 18 mm. The size
factor is obtained from Eq. (7.20) as

ks = 1.248d−0.112 = 1.248(27)−0.112 = 0.863.

The selection of d3 for use in calculating the size factor
should be discussed. No detailed information is given re-
garding the manufacture of the shaft. It is reasonable to as-
sume that the shaft was machined from extruded bar stock
slightly larger than the d3 dimension, thus justifying the ap-
proach in this solution. However, if the shaft were forged,
roll forged, or swaged, and then machined to the final di-
mensions, it would be reasonable to use d1 to obtain the size
factor. Also note that kf and ks are coincidentally equal in
this case.

No other correction factors apply to this problem, so that
the modified endurance limit is obtained from Eq. (7.18):

Se = kfksS
′

e = (0.822)(0.863)(307.5) = 218.1 MPa.

If d1 = 18 and d2 = 20, then the notch radius is r = 1 mm for
a semicircular groove. Therefore, from Fig. 7.10 for Su = 615
MPa, the notch sensitivity factor is around qn = 0.7. From
Eq. (7.17),

Table 11.1: Summary of results for Example 11.3.

d2 d1 d3 ns
(mm) (mm) (mm)

20 18 27 1.32

25 22 34 2.50

30 26 40 4.26

35 31 47 6.65

Kf = 1 + (Kc − 1)qn = 1 + (2.05− 1)(0.7) = 1.735.

For completely reversed bending, Mm = 0 and Ma = 70
N-m, and for steady torsion, Ta = 0 and Tm = 45 N-m.
Therefore, from Eq. (11.33),

ns =
π(0.020)3(380× 106)

32

√

[(

380

218.1

)

(1.735)(70)

]2

+ 452

= 1.38.

This safety factor is too low, since a minimum safety factor of
5.0 was prescribed. Thus, the diameter d2 is increased, and
the procedure is repeated. Table 11.1 summarizes the results
for a number of values of d2. Therefore, the value of d2 = 35
mm, d1 = 31 mm, and d3 = 47 mm are used to design the
shaft.

11.3.2 Brittle Materials

Although shafts are usually cold-worked metals that are ma-
chined to final desired dimensions, there are applications
where castings, which are often brittle materials, are used as
shafts. As discussed in Ch. 6, this requires a slightly different
analysis approach than for ductile materials.

For brittle materials, the forces in Fig. 11.2b are assumed
to be normal rather than tangent to the diagonal. Also, the
design line for any failure theory relevant to brittle materi-
als (see Section 6.7.2) extends from Se/ns to Su/ns instead
of from Se/2ns to Sy/2ns as was true for the ductile materi-
als. Following procedures similar to those used in obtaining
Eq. (11.30) gives

2Su

ns
= Kc

(

σm +
Su

Se
σa

)

+

√

K2
c

(

σm +
Su

Se
σa

)2

+ 4K2
cs

(

τm +
Su

Se
τa

)2

.

(11.38)

where Kc is the theoretical stress concentration factor. By
making use of Eqs. (11.4) and (11.5), Eq. (11.38) can be written
as

ns =
πd3Su/16

KcΨ+

√

K2
cΨ2 +K2

cs

(

Tm +
Su

Se
Ta

)2

, (11.39)

where Ψ is given by

Ψ = Mm +
Su

Se
Ma. (11.40)

If the minimum safe diameter of the shaft is desired for a spe-
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cific safety factor,

d =







16ns

πSu



KcΨ+

√

K2
cΨ2 +K2

cs

(

Tm +
Su

Se
Ta

)2











1/3

(11.41)
The important difference in the equations developed

above for the safety factor and the smallest safe diameter is
that Eqs. (11.33) and (11.34) are applicable for ductile materi-
als while assuming the MSST, Eqs. (11.36) and (11.37) are also
applicable for ductile materials but while assuming the DET,
and Eqs. (11.39) and (11.41) are applicable for brittle mate-
rials. Note the major differences between the equations de-
veloped for brittle and ductile materials. For brittle materi-
als [Eqs. (11.39) and (11.41)] the stress concentration factor
Kc and the ultimate stress Su are used, whereas for ductile
materials [Eqs. (11.33), (11.34), (11.36), and (11.37)] the fa-
tigue stress concentration factor Kf and the yield stress Sy

are used.

11.4 Additional Shaft Design

Considerations

Sections 11.2 and 11.3 described in detail the design approach
for sizing or analyzing a shaft from a stress standpoint. Ro-
tating shafts are very likely to encounter sufficient stress cy-
cles to necessitate design based on an endurance limit (see
Section 7.8). Therefore, the same concerns discussed in Ch. 7
hold for shafts. It needs to be recognized that the design ap-
proach in Ch. 7 is empirical in nature, but must be verified
through experiments. Shafts are often spared from extensive
test programs because of their inherently high safety factors,
the reasons for which are discussed below.

A common cyclic stress variation that occurs in practical
applications is reversed bending and steady torsion. From
Section 7.3, note that reversed bending implies that σm = 0,
or Mm = 0. Also, steady torsion implies that τa = 0, or Ta =
0. Thus, reduced forms of Eqs. (11.33) and (11.34), (11.36) and
(11.37), or (11.39) and (11.41) can be readily determined. For
example, for such a loading, Eqs. (11.33) and (11.34) become

ns =
πd3Sy

32

√

(

Sy

Se
KfMa

)2

+ T 2
m

, (11.42)

d =





32ns

πSy

√

(

Sy

Se
KfMa

)2

+ T 2
m





1/3

. (11.43)

Recall that Eqs. (11.42) and (11.43) are for the MSST and
Soderberg line; similar expressions can be obtained for other
criteria.

As mentioned previously, shafts usually display fairly
large safety factors compared to other machine elements.
There are a number of reasons for this, including:

1. Shafts are usually in difficult-to-access locations, and
have many machine elements mounted onto them. Re-
placing a shaft requires significant time merely for expo-
sure; removing machine elements, replacing the shaft,
and remounting the machine elements (and aligning
them) also requires significant time. Recognizing this,
designers commonly assign large safety factors to avoid
high costs associated with failure and replacement of
shafts.

2. Shafts themselves are usually quite expensive, and pro-
tection of the shaft is one of the main reasons that keys
or pins (Section 11.6) or slip clutches (Section 18.10) are
used.

3. Deflection is a major concern, and often shaft size is
specified to meet a deflection requirement, leading to
low stress levels. Deflection includes lateral deflection
of the shaft from bending moments (Ch. 5), as well as
torsional deflection (see Section 4.4).

4. Certain machine elements, such as gears or connecting
rods, require that the shaft provide load support with
minimal deflection. For this reason, it is not unusual to
place bearings immediately adjacent to such machine el-
ements. Thus, the spans and bending moments encoun-
tered in practice problems and examples are not reflec-
tive of well-supported shafts in practice. However, it
must be recognized that providing additional bearings
is not a straightforward approach, and requires careful
alignment and adjustment in order to evenly distribute
loads.

Design Procedure 11.1: Shafts
The general procedure for shaft design is as follows:

1. Develop a free-body diagram by replacing the various
machine elements mounted on the shaft by their stat-
ically equivalent load or torque components. To illus-
trate this, Fig. 11.6a shows two gears exerting forces on
a shaft, and Fig. 11.6b then shows a free-body diagram
of the shaft.

2. Draw a bending moment diagram in the x-y and x-z
planes as shown in Fig. 11.6c and d. The resultant in-
ternal moment at any section along the shaft may be
expressed as

Mx =
√

M2
xy +M2

xz. (11.44)

3. Analyze the shaft based on lateral deflection due to
bending using the approach in Ch. 5. If deflection is
a design constraint, select a diameter that results in ac-
ceptable deflection, or else relocate supports to reduce
the bending moments encountered.

4. Develop a torque diagram as shown in Fig. 11.6e.
Torque developed from one power-transmitting ele-
ment must balance that from other power-transmitting
elements.

5. Analyze the shaft based on deflection due to torsion
(Section 4.4). If torsional deflection is a design con-
straint, select a diameter that results in acceptable de-
flection.

6. Evaluate the suitability of the shaft from a stress stand-
point:



272 Chapter 11 Shafting and Associated Parts
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Figure 11.6: Shaft assembly. (a) Shaft with two bearings at A and B and two gears with resulting forces P1 and P2; (b) free-body
diagram of torque and forces resulting from assembly drawing; (c) moment diagram in x-z plane; (d) moment diagram in x-y
planes; (e) torque diagram.

(a) Establish the location of the critical cross-section,
or the x location where the torque and moment
are the largest.

(b) For ductile materials, use the MSST or the DET
covered in Section 6.7.1.

(c) For brittle materials, use the maximum-normal-
stress theory (MNST), the internal friction theory
(IFT), or the modified Mohr theory (MMT) (see
Section 6.7.2).

7. Use keyways, set screws or pins (see Section 11.6), or
slip clutches (Section 18.10) where appropriate to pro-
tect the shaft.

8. Compare the critical speed of the shaft (Section 11.5)
to the operating conditions. Change shaft diameter or
supports to avoid critical speeds if necessary.

11.5 Critical Speed of Rotating

Shafts

All rotating shafts deflect during operation. The magnitude
of the deflection depends on the stiffness of the shaft and its
supports, the total mass of the shaft and its attached parts,
and the amount of system damping. The critical speed of
a rotating shaft, sometimes called the natural frequency, is
the speed at which the rotating shaft becomes dynamically
unstable and large deflections associated with vibration are
likely to develop. For any shaft there are an infinite number
of critical speeds, but only the lowest (first) and occasionally
the second are generally of interest to designers. The others
are usually so high as to be well out of the operating range
of shaft speed. This text considers only the first critical speed

ma

W(t)

y

k

Figure 11.7: Simple single-mass system.

of the shaft. Two approximate methods of finding the first
critical speed (or lowest natural frequency) of a system are
given in this section, one attributed to Rayleigh and the other
to Dunkerley.

11.5.1 Single-Mass System

The first critical speed (or lowest natural frequency) can be
obtained by observing the rate of interchange between the
kinetic (energy of motion) and potential (energy of position)
energies of the system during its cyclic motion. A single mass
on a shaft can be represented by the simple spring and mass
shown in Fig. 11.7. The dashed line indicates the static equi-
librium position. The potential energy of the system is

U =

∫ δ

0

(mag + kδ) dδ −magδ,

where
ma = mass, kg
g = gravitational acceleration, 9.807 m/s2

k = spring rate, N/m
δ = deflection, m

Integrating gives

U =
1

2
kδ2. (11.45)
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The kinetic energy of the system with the mass moving with

a velocity of δ̇ is

Ke =
1

2
ma

(

δ̇
)2

. (11.46)

Observe the following about Eqs. (11.45) and (11.46):

1. As the mass passes through the static equilibrium posi-
tion, the potential energy is zero and the kinetic energy
is at a maximum and equal to the total mechanical en-
ergy of the system.

2. When the mass is at the position of maximum displace-
ment and is on the verge of changing direction, its ve-
locity is zero. At this point the potential energy is at a
maximum and is equal to the total mechanical energy of
the system.

The total mechanical energy is the sum of the potential and
kinetic energies and is constant at any time. Therefore,

d

dt
(U +Ke) = 0. (11.47)

Substituting Eqs. (11.45) and (11.46) into Eq. (11.47) gives

d

dt

[

1

2
kδ2 +

1

2
ma

(

δ̇
)2

]

= kδδ̇ +maδ̇δ̈ = 0.

Factoring δ̇ leads to

δ̇
(

maδ̈ + kδ
)

= 0, (11.48)

δ̈ + ω2δ = 0,

where
ω =

√

k/ma, rad/s. (11.49)

The general solution to this differential equation is

δ = C1 sin(ωt+ φ), (11.50)

where C1 is an integration constant. The first critical speed
(or lowest natural frequency) is ω. Substituting Eq. (11.50)
into Eqs. (11.45) and (11.46) gives

U =
k

2
C2

1 sin
2 (ωt+ φ) , (11.51)

Ke =
ma

2
C2

1ω
2 cos2 (ωt+ φ) . (11.52)

Note from Eq. (11.49) that, for static deflection, if k = W/δ
and ma = W/g, then

ω =

√

k

ma
=

√

W/y

W/g
=

√

g

δ
. (11.53)

11.5.2 Multiple-Mass System

From Eq. (11.46), the kinetic energy for n masses is

Ke =
1

2
ma1

(

δ̇1
)2

+
1

2
ma2

(

δ̇2
)2

+ · · ·+ 1

2
man

(

δ̇n
)2

.

(11.54)
If the deflection is represented by Eq. (11.50), then ymax = C1.
Also, ẏmax = C1ω = ymaxω. Therefore, the maximum kinetic
energy is

Ke,max =
ω2

2

∑

man (δn,max)
2 . (11.55)

From Eq. (11.45), the potential energy for n masses is

U =
1

2
k1δ

2

1 +
1

2
k2δ

2

2 + · · ·+ 1

2
knδ

2

n, (11.56)

and the maximum potential energy is

Umax =
1

2
k1 (δ1,max)

2 +
1

2
k2 (δ2,max)

2 + · · ·+ 1

2
kn (δn,max)

2 .

(11.57)
The Rayleigh method assumes that Ke,max = Umax or

1

2
ω2

∑

i=1,...,n

mai (δi,max)
2 =

1

2

∑

i=1,...,n

ki (δi,max)
2 .

Solving for angular velocity,

ω2 =

∑

i=1,...,n ki (δi,max)
2

∑

i=1,...,n mai (δi,max)
2
, (11.58)

but

ki =
Wi

δi,max

and mai =
Wi

g
. (11.59)

where Wi is the ith weight placed on the shaft and g is grav-
itation acceleration, 9.807 m/s2. Substituting Eq. (11.59) into
Eq. (11.58) gives

ωcr =

√

g
∑

i=1,...,n Wiδi,max

∑

i=1,...,n Wiδ2i,max

. (11.60)

This is the first critical speed (first natural frequency) of
a multiple-mass system when using the Rayleigh method.
Equation (11.60) is known as the Rayleigh equation. Be-
cause the actual displacements are larger than the static dis-
placements used in Eq. (11.60), the energies in both the de-
nominator and the numerator will be underestimated by the
Rayleigh formulation. However, the error in the underesti-
mate will be larger in the denominator, since it involves the
square of the approximated displacements. Thus, Eq. (11.60)
overestimates (provides an upper bound on) the first critical
speed.

The Dunkerley equation is another approximation to
the first critical speed of a multiple-mass system; it is given
as

1

ω2
cr

=
1

ω2
1

+
1

ω2
2

+ · · ·+ 1

ω2
n

, (11.61)

where
ω1 = critical speed if only mass 1 exists
ω2 = critical speed if only mass 2 exists
ωn = critical speed if only the nth mass exists

Recall from Eq. (11.53) that ωi =
√

g/δi.
The Dunkerley equation underestimates (provides a lower

bound on) the first critical speed. The major difference be-
tween the Rayleigh and Dunkerley equations is in the deflec-
tions. In the Rayleigh equation, the deflection at a specific
mass location takes into account the deflections due to all the
masses acting on the system; in the Dunkerley equation, the
deflection is due only to the individual mass being evaluated.
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Figure 11.8: Simply supported shaft arrangement for Exam-
ple 11.4.

Example 11.4: Critical Shaft Speed
Given: Figure 11.8 shows a simply supported shaft arrange-
ment. A solid shaft of 50 mm diameter made of AISI 1020
low-carbon steel is used. The following are given: x1 = 0.750
m, x2 = 1.000 m, x3 = 0.500 m, PA = 300 N, and PB = 500
N.

Find: Determine the first critical speed by using

(a) The Rayleigh method

(b) The Dunkerley method

Solution: From Table 5.1b, for simply-supported ends, the
deflections are given by:

For 0 ≤ x ≤ a

δy =
Pbx

6lEI
(l2 − x2 − b2). (a)

For a ≤ x ≤ l

δy =
Pa(l − x)

6lEI
(2lx− a2 − x2). (b)

From Table 3.1, the modulus of elasticity for carbon steel is
207 GPa. For a solid, round shaft, the area moment of inertia
is

I =
πd4

64
=

π(0.050)4

64
= 3.068× 10−7 m4.

The deflection at location A due to load PA from Eq. (a) and
a = x1 = x = 0.750 m and b = x2 + x3 = 1.5 m is

δAA =
PAbx

6lEI

(

l2 − x2 − b2
)

= − (300)(1.5)(0.75)
(

2.252 − 0.752 − 1.52
)

6(2.25) (207× 109) (3.068× 10−7)

= −0.8857 mm.

Note that in Fig. 11.8, the y-direction is upward; thus, PA and
δAA are negative. Also, the first subscript in δAA designates
the location where the deflection occurs, and the second sub-
script designates the loading that contributes to the deflec-
tion. The deflection at location A due to load PB from Eq. (a)
and a = x1 + x2, x = x1 = 0.750 m, and b = 0.5 m is

δAB =
PBbx

6lEI

(

l2 − x2 − b2
)

= − (500)(0.5)(0.75)
(

2.252 − 0.752 − 0.52
)

6(2.25) (207× 109) (3.068× 10−7)

= −0.9295 mm.

The total deflection at location A is

δA = δAA + δAB = −0.8857− 0.9295 = −1.815 mm.

The deflection at location B due to load PB from Eq. (a) and
x = a = x1 + x2 = 1.75 m and b = 0.5 m is

δBB =
PBbx

6lEI

(

l2 − x2 − b2
)

= − (500)(0.5)(1.75)
(

2.252 − 1.752 − 0.52
)

6(2.25) (207× 109) (3.068× 10−7)

= −0.8930 mm.

The deflection at location B due to load PA from Eq. (b) and
a = x1 = 0.75 m, b = x2+x3 = 1.5 m, and x = x1+x2 = 1.75
m is

δBA =
PAa(l − x)

6lEI

(

2lx− a2 − x2
)

= − (300)(0.75)(2.25− 2.75)

6(2.25) (207× 109) (3.068× 10−7)

×
[

2(2.25)(1.75)− 0.752 − 1.752
]

,

or δBA = −0.5577 mm. Thus, the total deflection at location
B is

δB = δBA + δBB = −0.5577− 0.8930 = −1.451 mm.

(a) Using the Rayleigh method, Eq. (11.60) gives the first
critical speed as

ωcr =

√

g(PAδA + PBδB)

PAδ2A + PBδ2B

=

√

(9.81) [(300)(0.001815) + (500)(0.001451)]

(300)(0.001815)2 + (500)(0.001451)2
.

or ωcr = 78.13 rad/s = 746 rpm.

(b) Using the Dunkerley method, Eq. (11.61) gives

1

ω2
cr

=
1

ω2

cr,A

+
1

ω2

cr,B

.

where

ωcr,A =

√

g

δAA
=

√

9.81

0.0008857
= 105.2 rad/s = 1005 rpm,

ωcr,B =

√

g

δBB
=

√

9.81

0.0008930
= 104.8 rad/s = 1001 rpm.

Therefore, the critical speed is

1

ω2
cr

=
1

ω2

cr,A

+
1

ω2

cr,B

=
1

10052
+

1

10012
,

which is solved as ωcr = 709 rpm.
In summary, the Rayleigh equation gives ωcr = 746 rpm,

which overestimates the first critical speed; the Dunkerley
equation gives ωcr = 709 rpm, which underestimates the
first critical speed. Therefore, the actual first critical speed is
between 709 and 746 rpm, and the shaft design should avoid
this range of operation.


